We describe a characterization of convex polyhedra in $\h^3$ in terms oftheir dihedral angles, developed by Rivin. We also describe some geometric andcombinatorial consequences of that theory. One of these consequences is acombinatorial characterization of convex polyhedra in $\E^3$ all of whosevertices lie on the unit sphere. That resolves a problem posed by Jakob Steinerin 1832.
展开▼
机译:我们根据Rivin提出的二面角来描述$ \ h ^ 3 $中凸多面体的特征。我们还描述了该理论的一些几何和组合后果。这些结果之一是$ \ E ^ 3 $中凸多面体的组合特征,其所有顶点都位于单位球体上。这解决了Jakob Steinerin 1832提出的问题。
展开▼